In total, 125 species were recorded. 501 species records were made: 416 from the Ballyhenry Bay bed and 85 from the Castleward Bay bed. Less survey work was undertaken on the Castleward Bay bed, so the lower number of records does not necessarily reflect lower diversity.

Sponges
- *Cliona celata*
- *Porifera indet.*

Anemones, Corals, Hydroids and Jellyfish
- *Actinia equina* (beadlet anemone)
- *Aurelia aurita* (moon jellyfish)
- *Cyanea capillata* (lion’s mane jellyfish)
- *Cyanea lamarckii* (blue lion’s mane jellyfish)
- *Metridium senile* (antenna hydroid)
- *Nemertesia antennina* (kelp fur)
- *Bolinopsis infundibulum* (sea gooseberry)
- *Pleurobrachia pileus* (sea gooseberries)

Barnacles
- *Crab Pagurus maenas* (brown shrimp)
- *Crangon crangon* (brown shrimp)
- *Goneplax rhomboides* (spider crab)
- *Liocarcinus depurator* (harbour swimming crab)
- *Macropodia sp.* (velvet swimming crab)
- *Necora puber* (hermit crabs)
- *Palaemon serratus* (common prawn)

Molluscs
- *Gibbula cineraria* (painted top shell)
- *Rissoa membranacea* (netted dogwhelk)
- *Hinia reticulata* (periwinkle)
- *Littorina littorea* (dogwhelk)
- *Strangford Seagrass Survey 2008*
- *Acanthodoris pilosa* (seaslug)
- *Eubranchus farrani* (seaslug)
- *Favorinus branchialis* (mussel)
- *Mytilus edulis* (king scallop)
- *Pecten maximus* (saddle oyster)
- *Pododesmus patelliformis* (cuttlefish)
- *Eledone cirrhosa* (curled octopus)
- *Prostheceraeus vittatus* (peacock worm)

Echinoderms
- *Amphiura sp.* (burrowing brittlestar)
- *Asterias rubens* (common sunstar)
- *Crossaster papposus* (edible urchin)
- *Echinus esculentus* (edible crab)
- *Henricia sp.* (spiny starfish)
- *Marthasterias glacialis* (sand brittlestar)
- *Ophiura ophiura* (sea star)
- *Callionymus lyra* (reticulated dragonet)
- *Centrolabrus exoletus* (goldsinny)
- *Ctenolabrus rupestris* (goldsinny)
- *Entelurus* (two-spot goby)
- *Gobiusculus flavescens* (ballan wrasse)
- *Nerophis lumbriciformis* (butterfly)
- *Pholis gunnellus* (flounder)
- *Pleuronectidae indet.*juveniles (sand/common goby)
- *Scyliorhinus canicula* (sand/common goby)
- *Syngnathus acus* (greater pipefish)
- *Trigla lucerna* (two-spot goby)

Seasquirts
- *Ciona intestinalis* (seaslug)
- *Clavelina lepadiformis* (didemnid squirt)

Green algae
- *Chondrus crispus* (bladder wrack)
- *Corallina* (Red Rags)
- *Chylocladia verticillata* (red fringe weed)
- *Laminaria saccharina* (fur beards)
- *Saccorhiza polyschides* (wireweed)

Red Algae
- *Calliblepharis ciliata* (red algae)
- *Ceramium* sp. (red algae)
- *Chondria dasyphylla* (red algae)
- *Cystoclonium purpureum* (red algae)
- *Delesseria sanguinea* (red algae)
- *Ectocarpus* (red algae)
- *Fucus serratus* (Bladder Wrack)
- *Fucus vesiculosus* (Sugar Kelp)
- *Lithothamnion sp.* (dulse)
- *Polysiphonia lanosa* (polysiphonia)
- *Sargassum muticum* (wireweed)

The invasive seaweed *Sargassum muticum* (wireweed or jawweed) was found towards the edge of the Ballyhenry Bay Seagrass bed. It is though that this species might compete with *Zostera marina*. Flat fish species including many juveniles unidentifiable to species level, rounder and place were present around the base of the eelgrass. Two-spot goby *Gobiusculus flavescens* and fifteen spined stickleback *Spinachia spinachia* were frequently sighted around the upper part of the fronds.

Surveys taking part were:
- Orea Anderson, Charmaine Blake, Andy Blight, Ruth Brennan,
- Graham Day, Colin Ferguson, Claire Goodwin, Dave Goodwin,
- Catherine Higgins, Sven Laming, Adrian Marshall, Daniel O’Neill, Julia Nunn, Henk van Rein,
- Ronnie Snyder. Thanks to DV Diving who were used
- for boat cover and supplied site info. The survey was designed and run in conjunction with Charmaine Blake of NIEA.

Seasearch is a volunteer underwater survey project for recreational divers to actively contribute to the conservation of the marine environment (see www.seasearch.org.uk for more information). Financial support for the project was given by Northern Ireland Environment Agency. This report was written by Claire Goodwin (thanks to Julia Nunn and Chris Wood for editorial comments). Photos are by Claire Goodwin.

For more information on Seasearch Northern Ireland email: claire.goodwin@gmail.com.
Eelgrass or Seagrass is not seaweed but a true flowering plant like those found on land. It has roots and bears flowers, fruit and seeds. We have only five species of marine flowering plant in the UK - three of these are species of eelgrass. In Strangford Lough, we are studying the subtidal common eelgrass Zostera marina. Its scientific name derives from the Greek ‘zoster’ for belt, and refers to its strap-like leaves. Eelgrass lives in sheltered mud or sand areas. The long leaves of this species (up to 1m) float upright in the water column, supported by airspaces called lacuna in the tissue.

Eelgrass used to be widespread in Northern Ireland; it was especially common in Strangford, Larne and Belfast Loughs. However, in the 1930s there was a significant decline and this continued throughout the century. In the 1990s, only 30% of the eelgrass that was present in the 1970s remained. One of the major factors was seagrass wasting disease, a fungal infection which attacks the leaves, leaving blackened dead areas. However, other factors played a part too. Coastal developments can result in removal of eelgrass and the sediment released into the seawater can block light, stopping the plants photosynthesising, and smothering them. Chemical and organic pollution such as sewage, agricultural fertilisers and oil pollution can kill plants. Pleasure craft can damage beds when anchoring, with propellers, or setting up moorings. Alien species such as Sargassum muticum, Jap wireweed can compete with eelgrass for space. Stormy weather can dislodge plants; this is becoming an increasing risk with more frequent storms due to global warming. Recently in Strangford Lough, intertidal eelgrass species have even been damaged by ploughing.

The dense forest formed by eelgrass blades form the perfect hiding place for small marine organisms to duck out of the way of predators - eelgrass beds are an important nursery habitat for many fish species. The beds are one of the most productive soft sediment habitats and marine invertebrates feed not only on the eelgrass leaves (which are quite hard to digest because of the high cellulose content) but on the detritus formed as dead leaves break down. In Washington State in America, 1/3 of marine invertebrate species disappeared after seagrass wasting disease struck. Animals also live on the eelgrass leaves and some algae species are obligate associates of Zostera marina, not found on any other substrate. Some of the most charismatic species found in eelgrass beds are seahorses, the short snouted Hippocampus hippocampus and long snouted or spiny seahorse Hippocampus guttulatus and several species of their snake-like relative the pip EIF are all associated with eelgrass habitats.

This Seasearch project will give us a much better idea of the current state of our eelgrass beds, and will provide baseline data so that we, or other researchers, will be able to return in the future to see how they are faring. Eelgrass beds are recognised as important habitats for biodiversity under European legislation including the Habitats Directive and Water Framework Directive. All the data collected by the Seasearch volunteers will be used by Northern Ireland Environment Agency for assessment of eelgrass bed condition and future monitoring.

Survey Methodology

We knew that Seagrass was present in Ballyhenry Bay and Castleward Bay from casual dive records, but there was no information on the size or condition of the beds. The survey programme had five main phases:

1) Dives to locate the position of the beds/check existing positions were accurate.
2) Assessment of bed size. In Ballyhenry Bay, seven pairs of divers swam out at right angles from the shore to try and find where the deepest and shallowest edges of the bed were. At the Castleward Bay site, divers were dropped at various positions around the known seagrass location.
3) Divers towed a GPS (Global Positioning System), tied to a surface marker buoy, around the edge of the bed. This device gets a very accurate location from satellites. It gave a new position every 30 seconds, with the resultant line giving the divers track through the water and therefore the edge of the bed.
4) Using plumbing pipe, we manufactured 0.25m² squares or ‘quadrats’, divers used these to measure the number of eelgrass shoots per square metre in various bed areas.
5) Finally, as on all Seasearch dives, a list of the different plant and animal species present was compiled. Samples of leaf blades were taken for a project on the genetics of Zostera marina. In 2009, we will be making a detailed map of the Ballyhenry Bay bed using a survey grid.

Results

In total sixteen dives were undertaken on the Ballyhenry Bay bed and three on the Castleward Bay bed. The Ballyhenry Bay bed was much larger than previously supposed: over 390m long parallel to the shore and 105m wide out from the shore. Shoot density in the Ballyhenry Bay bed was between 8 and 32 shoots/m², average shoot density 16.80/m². Eelgrass blade length varied between 12 and 100cm, average 58.32cm. Much of the bed had a dense covering of Ectocarpus sp., a fuzzy brown alga. Only an initial survey was performed on the Castleward Bay bed - the bed outline was mapped and Seasearch forms completed. This bed was much smaller than the Ballyhenry Bay bed, with an area of 706 m² and a maximum diameter of 124m.

Diver tows an SMB with GPS to map eelgrass bed outline

Diver using quadrat to estimate eelgrass density

Map of Castleward Seagrass bed. Dark green line is GPS track and the pale green is the estimated bed area.

Map of Ballyhenry Bay bed (2007). The dark green line is GPS track and the pale green is the estimated bed area.